Exercise 13

In Exercises 13 to 19, use set theoretic or vector notation or both to describe the points that lie in the given configurations.

The plane spanned by $\mathbf{v}_{1}=(2,7,0)$ and $\mathbf{v}_{2}=(0,2,7)$

Solution

These two vectors are linearly independent because one is not a constant multiple of the other. That means an entire plane is spanned by taking a linear combination of the two.

$$
\begin{aligned}
C_{1} \mathbf{v}_{1}+C_{2} \mathbf{v}_{2} & =C_{1}(2,7,0)+C_{2}(0,2,7) \\
& =\left(2 C_{1}, 7 C_{1}, 0\right)+\left(0,2 C_{2}, 7 C_{2}\right) \\
& =\left(2 C_{1}, 7 C_{1}+2 C_{2}, 7 C_{2}\right)
\end{aligned}
$$

This plane is two-dimensional because there are two arbitrary constants, C_{1} and C_{2}. The points in this plane are described in set notation by

$$
\left\{\left(2 C_{1}, 7 C_{1}+2 C_{2}, 7 C_{2}\right), C_{1} \in \mathbb{R}, C_{2} \in \mathbb{R}\right\} .
$$

Any plane can be described by a vector perpendicular to it. For the plane spanned by \mathbf{v}_{1} and \mathbf{v}_{2} in particular, a perpendicular vector can be obtained by taking the cross product.

$$
\mathbf{v}_{1} \times \mathbf{v}_{2}=\left|\begin{array}{ccc}
\hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\
2 & 7 & 0 \\
0 & 2 & 7
\end{array}\right|=49 \hat{\mathbf{x}}-14 \hat{\mathbf{y}}+4 \hat{\mathbf{z}}
$$

Because this vector is normal to every vector lying in the plane, the dot product of these two is zero. The equation for a plane is obtained from this fact.

$$
\begin{gathered}
\left(\mathbf{v}_{1} \times \mathbf{v}_{2}\right) \cdot\left(\mathbf{r}-\mathbf{v}_{1}\right)=0 \\
(49,-14,4) \cdot[(x, y, z)-(2,7,0)]=0 \\
(49,-14,4) \cdot(x-2, y-7, z)=0 \\
49(x-2)-14(y-7)+4 z=0
\end{gathered}
$$

Another way to describe the points in the plane using set notation is

$$
\{(x, y, z) \mid 49(x-2)-14(y-7)+4 z=0\} .
$$

